
SiteOut: user manual

DePace Lab

June 1, 2015

Contents

1 Introduction 1

2 Main options 1
2.1 Step 1: sequence design . 2
2.2 Step 2: motifs to avoid and GC content . 2
2.3 Step 3: submission . 3

3 Examples 4
3.1 Generating large sequences by merging smaller ones 4
3.2 Removing motifs in a hierarchical order . 5
3.3 Separating functional sequences with motif-free spacers 6
3.4 Adding transcription factor binding sites . 7
3.5 Reusing an already synthesized motif-free sequence 8

4 Technical information 9

1 Introduction

This tool allows to remove specific nucleotide motifs, such as transcription factor binding sites,
from a DNA sequence. It can be used to to design a new sequence from scratch, refine a
predefined sequence, or to create motif-free spacers between functional sequences. The code
will either look for explicit motifs or will use Patser to check for predicted motifs based on the
chosen position weight matrices (PWMs). Once you click on ’Submit’, your request will be sent
to Orchestra, Harvard Medical School’s high-performance computing environment, where it will
run for a while depending on its characteristics. The output will be sent to you by email as soon
as it is ready.

The tool is presented in REFERENCE, so we ask you to cite this reference if you have used
it in your research.

2 Main options

To use the tool you have to follow three steps: specify the characteristics of the sequence you
want to design, determine which motifs you want to avoid in your sequence, and provide an
email where the results will be sent.

1

2.1 Step 1: sequence design

Random sequence

This option allows to design a random motif-free sequence of arbitrary length. The program will
start with a random sequence and gradually remove motifs from it. You just have to specify the
length of the sequence.

Refine a sequence

This option allows to remove motifs from a given sequence. The sequence can be entered
directly into the text box or uploaded as a single-sequence fasta file Figure(1).

Spacer designer

This option allows to create motif-free spacers between functional sequences. A ’sequence
design’ file with the details of the sequence to be created has to be uploaded: it has to be a
plain text file with functional sequences and motif-free spacer lengths intercalated forming the
desired pattern. It can start and end with a spacer or with a functional sequence, and two
consecutive sequences can be given; in that case no spacer will be created there (1).

150
cgtagctgat
230
ttcgtaaattgcttgacgattcg
45
atgcttttcgaaaatgctgacctgac
agctgatgcttag
123

>my_sequence
GGATCCTAAGTTAACTA...

Figure 1: Screenshot of the ’sequence design’ section, highlighting the content of the fasta format
(’my seq.fa’) and sequence design (’seq design.txt’) files.

2.2 Step 2: motifs to avoid and GC content

Here you must provide information about the motifs to be removed from sequences or spacers
chosen in the previous section. You have to upload a zipfile with the position weight matrices
(PWMs) for the motifs of interest and/or a list of explicit motifs Figure(2). Patser will be used
to find motifs based on PWMs with a cutoff threshold given by the P value.

where to find PWMs
The GC content is the percentage of Gs and Cs in the sequence, so must be a number

between 1 and 100. Most natural occurring DNA sequences have GC content values of between
30% and 50%. The tool uses it to create initial random sequences or spacers, and to decide the
probability of choosing G or C when mutations are introduced to remove motifs.

2

tata
cgcgcgta
ttcgtta
ggcgcgcga

Figure 2: Screenshot of the ’motifs to avoid & GC content’ section highlighting the content of the zipfile
with PWMs and the format of the file with motifs to avoid.

2.3 Step 3: submission

The results will be sent to the email provided here. First, once the job starts running in the
cluster you will receive a confirmation email with all the information regarding your request, as
well as a confirmation number that you can use if you need to contact us. Once the job is done,
you will receive a second email with the results: it will include the designed sequence and a .csv
file that has information about the motifs in the final sequence (position and strength). The
.csv file can be visualized using InSite (http://www.cs.utah.edu/~miriah/insite/).

3

http://www.cs.utah.edu/~miriah/insite/

3 Examples

The three options described above confer the tool with enough flexibility to help create most
sequences where careful motif removal or manipulation is required. Here we describe four exam-
ples that show how the different sequence-design options can be combined to create complicated
sequences.

3.1 Generating large sequences by merging smaller ones

When designing very long motif-free sequences, it is convenient to parallelize the job to save time
and avoid hitting the 12 hour wall time. For example, to design a 10 kb sequence, it is much
faster to submit five independent jobs using the Random sequence option, each designing a
different 2 kb piece. These five sequences can be connected together and the resulting sequence
refined using the Refine a sequence option, which will remove any motifs that formed at the
junctions between them Fig(3).

sequence 1 sequence 2 sequence 3 sequence 4 sequence 5

2kb

10kb

five 2kb sequences

motifs at the junctions

10kb refined sequence

Random sequences (x5)

merge
sequences

refine a
sequence

Figure 3: To generate a 10 kb sequence we ask SiteOut to create five 2 kb random motif-free sequences
and we then merge them. Sticking sequences together creates motifs in the junctions, so we later ask
SiteOut to refine the overall sequence.

4

3.2 Removing motifs in a hierarchical order

While SiteOut does efficiently remove motifs, there may be situations where the number of
motifs to be removed is so high that no solution exists or, if it does, is extremely difficult to
find. SiteOut will return the best sequence it has been able to find, but this will not have zero
motifs. In these situations one may want to prioritize the removal of some motifs over the rest.
This can be easily done in different steps Fig(4).:

1. Create a random sequence where only the least important motif is removed.

2. Refine the initial sequence step by step, removing one type of motif at a time, in order of
increasing importance.

3. In the last step remove the motifs that you want by all means to be avoided in your
sequence.

p
rio

rity

remove

remove

remove

Figure 4: Removing motifs in a hierarchical fashion. We want to get rid of all red motifs and the
majority of the green ones, while we do not care that much about the blue ones. We take three steps,
removing first the blues (top), then the greens (middle) and finally the reds (bottom). In each step, the
removal process may create new motifs of different type, but the most relevant ones are deleted in the
subsequent steps

5

3.3 Separating functional sequences with motif-free spacers

The Spacer designer option enables to control the motif content of random spacers created
in between functional sequences, while leaving the functional sequences themselves untouched.
This function is particularly useful for designing synthetic enhancers in which it is desirable not
only to have the spacers between clusters of transcription factor binding sites be ‘neutral’ but
also to avoid any creation of binding sites at the junctions Fig(5).

300bp

enhancer 1 enhancer 2 enhancer 3

acaacgctgattttcgat... tttagctagctgattcgtttaaacgc... cggacgcgrgggattgctatag...

design.txt

300
acaacgctgattttcgat...
250
tttagctagctgattcgtttaaacgc...
150
cggacgcgrgggattgctatag...
200

enhancer 1 enhancer 2 enhancer 3

250bp 150bp 200bp

in
p

u
t

S
it

e
O

u
t

o
u
tp

u
t

Figure 5: We want to create a construct where three enhancers are separated by spacers of different
lengths. Colored bars state for binding sites along the sequences. We give SiteOut a ’design.txt’ file with
the desired arrangement of sequences. The tool sends us a sequence where enhancers are separated by
spacers (red) with no motifs in them.

6

3.4 Adding transcription factor binding sites

Adding transcription factor binding motifs to a backbone of motif-free sequence can be done
using, again, the Spacer designer tool. In this case, the transcription factor binding motifs to be
inserted are the functional sequences that will be untouched, and the motif-free spacers between
them will ensure that no additional binding sites are created in the junctions Fig(6).

10bp

motif 1 motif 2

ggctagct ttaagagaaa

8bp 5bp 7bp

ggctagct ttaagagaaa ttaagagaaa ggctagct

in
p
u
t

S
it

e
O

u
t

o
u
tp

u
t

design.txt

ggctagct
10
ttaagagaaa
8
ttaagagaaa
5
ggctagct
7

Figure 6: We want to create a construct where two transcription factor binding motifs (blue and green)
are embedded into a motif-free backbone. We give SiteOut a ’design.txt’ file with the desired distribution
of binding sites within the motif-free backbone. The tool sends back a sequence with the desired binding
motif pattern (blue, green, green, blue) inserted into a motif-free backbone (red).

7

3.5 Reusing an already synthesized motif-free sequence

Synthesizing sequences is not cheap and so users may want to reuse a motif-free spacer that
has already been made. This can be achieved without compromising on motif generation at
the junctions between functional and spacer sequences by setting the synthesized DNA as a
“functional sequence” in the Spacer designer option so that it won’t be touched by the algorithm.
Short 10 bp spacers can then be designed to link them without creating new TFBMs; these
can easily be incorporated into primers for cloning Fig(7).

10bp

already sythesized motif-free sequence ($$)

functional seq. 2

acgtagcttagctgggaa... tttcgatgcccagctgatg...

design.txt

gggctgagctgatttagta...

acgtagcttagctgggaa...

cccgtgctagctttaagtcg...

10

10

10

10

tttcgatgcccagctgatg...

functional seq. 1

chunk 1 to be reused
(gggctgagctgatttagta...)

chunk 2 to be reused
(cccgtgctagctttaagtcg...)

10bp 10bp 10bp

motif-free

func. seq.1 func. seq.2

motif-free motif-free

func. seq.1 func. seq.2chunk 1 chunk 2

in
p

u
t

S
it

e
O

u
t

o
u
tp

u
t

Figure 7: We want to create motif-free spacers between two functional sequences (blue and orange)
reusing an expensive motif-free sequence we had already synthesized (green). We first select the chunks
of the synthesized sequence we want to use (darker greens). We then give SiteOut a ’design.txt’ file
with the functional sequences to be untouched: the first chunk, the first functional sequence, the second
chunk, and the second functional sequence, intercalated by small 10 bp linkers (red) that can be (red)
easily cloned using primers. SiteOut returns a sequence where the two functional sequences are embedded
into a motif-free backbone that we do not need to synthesize from scratch.

8

4 Technical information

SiteOut runs in Harvard Medical School’s cluster, and has a wall time of 12 hours, which should
be enough for the majority of requests. Figure(8) shows runtimes as a function of the number
of PWMs for the design of 300 bp sequences with a P value of 0.003. The trend is exponential,
being Patser the slowest step in each iteration. Not all the nodes in the cluster are equally fast,
so when a job is submitted its runtime depends on where it ends up running.

0 20 40 60 80 100 120 140
100

101

102

103

104

105

#PWMs

tim
e

(s
)

Figure 8: Benchmark of SiteOut running in Harvard Medical School’s cluster. Design of 300 bp random
sequences, P value of 0.003. For 140 PWMs the 12 hour wall time is always reached.

If you have a more complicated task and the 12 hour wall time is not enough (not even
splitting the problem in multiple jobs -see first example above-), or if you wan to implement
new functionalities for more specific problems, there is a standalone version of SiteOut you
can download from the website. It has been tested in Linux and OSX, but should be easily
implemented in Windows. The Monte Carlo algorithm is written in python, and requires Patser
to be compiled, and the path to Patser to be correctly set. Patser can be downloaded from
Gary Stormo’s lab website http://stormo.wustl.edu/resources.html.

9

http://stormo.wustl.edu/resources.html

	Introduction
	Main options
	Step 1: sequence design
	Step 2: motifs to avoid and GC content
	Step 3: submission

	Examples
	Generating large sequences by merging smaller ones
	Removing motifs in a hierarchical order
	Separating functional sequences with motif-free spacers
	Adding transcription factor binding sites
	Reusing an already synthesized motif-free sequence

	Technical information

